ZEOS

Ваш IP адрес: 18.212.206.217
Сегодня: 23.02.2019
07:39

Онлайн-библиотека учебно-методической литературы

Библиотека mirsmartbook.ru предлагает посетителям возможность чтения книг в режиме онлайн.
Книги, ГДЗ, решебники, готовые домашние задания, ЕГЭ, ГИА, наука и обучение, словари, все для преподавателей, школьников и студентов, русский язык, математика, физика, английский язык, алгебра, геометрия по всем классам, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 класс. А ты НАШЁЛ то, что тебе нужно? У нас Вы сможете найти все!
Новости Контакты Главная
Загрузка...
Открыть-Закрыть рекламный блок

Меню сайта

Реклама

Счетчики


Мы вконтакте

Время учиться

Реклама

Загрузка...

Высшая математика в упражнениях и задачах. (В 2-х частях). Ч 1 / Данко П.Е., Попов А.Г., Кожевников Т.Я. / 1986г


20:47
Высшая математика в упражнениях и задачах. (В 2-х частях). Ч 1 / Данко П.Е., Попов А.Г., Кожевников Т.Я. / 1986г
Аннотация:  Данко П.Е., Попов А.Г., Кожевников Т.Я. Высшая математика в упражнениях и задачах. (В 2-х частях)- М.: Высш.шк, 1986. ч.1 – 304с. Аналитическая геометрия, линейная алгебра, дифф. исчисление функций одной и нескольких переменных, интегральное исчисление, основы линейного программирования.

Содержание I части охватывает следующие разделы программы: аналитическую геометрию, основы линейной алгебры, дифференциальное исчисление функций одной и нескольких переменных, интегральное исчисление функций одной независимой переменной, элементы линейного программирования.

В каждом параграфе приводятся необходимые теоретические сведения. Типовые задачи даются с подробными решениями. Имеется большое количество задач для самостоятельной работы.


Часть 1.
ОГЛАВЛЕНИЕ
Предисловие к четвертому изданию  5
Из предисловий к первому, второму и третьему изданиям  5
Глава I. Аналитическая геометрия на плоскости
§ 1. Прямоугольные и полярные координаты  6
§ 2. Прямая.  15
§ 3. Кривые второго порядка   25
§ 4. Преобразование координат и упрощение уравнений кривых второго порядка   32
§ 5. Определители второго и третьего порядков и системы линейных уравнений с двумя и тремя неизвестными 39
Глава II. Элементы векторной алгебры
§ 1. Прямоугольные координаты в пространстве 44
§ 2. Векторы и простейшие действия над ними. 45
§ 3. Скалярное и векторное произведения. Смешанное произведение  . 48
Глава III. Аналитическая геометрия в пространстве
§ 1. Плоскость и прямая . 53
§ 2. Поверхности второго порядка.  63
Глава IV. Определители и матрицы
§ 1. Понятие об определителе n-го порядка. 70
§ 2. Линейные преобразования и матрицы 74
§ 3. Приведение к каноническому виду общих уравнений кривых и поверхностей второго порядка 81
§ 4. Ранг матрицы. Эквивалентные матрицы 86
§ 5. Исследование системы т линейных уравнений с n неизвестными . 88
§ 6. Решение системы линейных уравнений методом Гаусса 91
§ 7. Применение метода Жордана — Гаусса к решению систем линейных уравнений  94
Глава V. Основы линейной алгебры
§ 1. Линейные пространства  103
§ 2. Преобразование координат при переходе к новому базису . 109
§ 3. Подпространства  111
§ 4. Линейные преобразования 115
§ 5. Евклидово пространство 124
§ 6. Ортогональный базис и ортогональные преобразования 128
§ 7. Квадратичные формы  131
Глава VI. Введение в анализ
§ 1. Абсолютная и относительная погрешности  136
§ 2. Функция одной независимой переменной 137
§ 3. Построение графиков функций 140
§ 4. Пределы  142
§ 5. Сравнение бесконечно малых 147
§6. Непрерывность функции  149
Глава VII. Дифференциальное исчисление функций одной независимой переменной
§ 1. Производная и дифференциал 151
§ 2. Исследование функций 167
§ 3. Кривизна плоской линии 183
§ 4. Порядок касания плоских кривых 185
§ 5. Вектор-функция скалярного аргумента и ее производная .  185
§ 6. Сопровождающий трехгранник пространственной кривой. Кривизна и кручение 188
Глава VIII. Дифференциальное исчисление функций нескольких независимых переменных
§ 1. Область определения функции. Линии и поверхности уровня  192
§ 2. Производные и дифференциалы функций нескольких переменных . 193
§ 3. Касательная плоскость и нормаль к поверхности 203
§ 4. Экстремум функции двух независимых переменных 204
Глава IX. Неопределенный интеграл
§ 1. Непосредственное интегрирование. Замена переменной и интегрирование по частям 208
§ 2. Интегрирование рациональных дробей 218
§ 3. Интегрирование простейших иррациональных функций 229
§ 4. Интегрирование тригонометрических функций 234
§ 5. Интегрирование разных функций  242
Глава X. Определенный интеграл
§ 1. Вычисление определенного интеграла 243
§ 2. Несобственные интегралы 247
§ 3. Вычисление площади плоской фигуры 251
§ 4. Вычисление длины дуги плоской кривой 254
§ 5. Вычисление объема тела 255
§ 6. Вычисление площади поверхности вращения 257
§ 7. Статические моменты и моменты инерции плоских дуг и фигур . 258
§ 8. Нахождение координат центра тяжести. Теоремы Гульдена . 260
§ 9. Вычисление работы и давления 262
§ 10. Некоторые сведения о гиперболических функциях 266
Глава XI. Элементы линейного программирования
§ 1. Линейные неравенства и область решений системы линейных неравенств  271
§ 2. Основная задача линейного программирования 274
§ 3. Симплекс-метод 276
§ 4. Двойственные задачи 287
§ 5. Транспортная задача 288
Ответы 294



Прикрепления: Картинка 1
Категория: Mатематика студентам | Просмотров: 1846 | Добавил: novivirus | Теги: Данко П.Е. | Рейтинг: 0.0/0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Похожие материалы: