ZEOS

Ваш IP адрес: 54.173.237.152
Сегодня: 17.02.2019
07:03

Онлайн-библиотека учебно-методической литературы

Библиотека mirsmartbook.ru предлагает посетителям возможность чтения книг в режиме онлайн.
Книги, ГДЗ, решебники, готовые домашние задания, ЕГЭ, ГИА, наука и обучение, словари, все для преподавателей, школьников и студентов, русский язык, математика, физика, английский язык, алгебра, геометрия по всем классам, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 класс. А ты НАШЁЛ то, что тебе нужно? У нас Вы сможете найти все!
Новости Контакты Главная
Загрузка...
Открыть-Закрыть рекламный блок

Меню сайта

Реклама

Счетчики


Мы вконтакте

Время учиться

Реклама

Загрузка...

Высшая математика. Руководство к решению задач. Часть 2 / Лунгу К.Н. Макаров Е.В. / 2007г


20:55
Высшая математика. Руководство к решению задач. Часть 2 / Лунгу К.Н. Макаров Е.В. / 2007г
Аннотация:  Лунгу К. Н., Макаров Е. В. Высшая математика. Руководство к решению задач. Ч. 2 – М., ФИЗМАТЛИТ, 2007 – 384 с

Настоящее пособие написано на основе многолетнего опыта чтения лекций и проведения практических занятий по высшей математике в Московском государственном открытом университете на различных факультетах Оно является продолжением одноименного учебного пособия и содержит указания по решению задач основного курса, начиная с неопределенного интеграла и кончая дифференциальными уравнениями, а также задач по теории вероятностей и математической статистике Наряду с большим числом решенных задач приводятся упражнения для самостоятельного решения, в каждой из восьми глав даны контрольные задания.

Пособие рассчитано на студентов очной, заочной и вечерней форм обучения факультетов, где математика не является профилирующей дисциплиной


ЧАСТЬ 2.
Предисловие 6
Раздел А. Основной курс
Глава I Неопределенный интеграл 8
§ 1 Первообразная и неопределенный интеграл 8
§ 2 Простейшие методы интегрирования 19
§ 3 Интегрирование по частям 28
§ 4 Интегрирование рациональных функции 35
§ 5 Интегрирование тригонометрических функций 40
§ 6 Интегрирование гиперболических функций 45
§ 7 Интегрирование иррациональных функций 47
Контрольные задания 55
Глава II Определенный интеграл и его применения 58
§ 1 Определение, свойства, вычисление и применения определенного интеграла 58
§ 2 Применения определенного интеграла к вычислению геометрических величин 67
§ 3 Применения определенного интеграла к вычислению физических величин 78
§ 4 Несобственные интегралы 86
Контрольные задания 91
Глава III Кратные, криволинейные и поверхностные интегралы 94
§ 1 Двойной интеграл, его свойства и вычисление 94
§ 2 Замена переменных в двойном интеграле 104
§ 3 Применения двойного интеграла 109
§ 4 Тройной интеграл и его свойства 115
§ 5 Криволинейные интегралы 125
§ 6 Поверхностные интегралы 138
Контрольные задания 147
Глава IV Дифференциальные уравнения 151
§ 1 Дифференциальные уравнения первого порядка Геометрический смысл дифференциального уравнения и его решения 151
§ 2 Уравнения с разделенными и с разделяющимися переменными 157
§ 3 Однородные уравнения первого порядка 161
§ 4 Линейные дифференциальные уравнения первого порядка и уравнения Бернулли 164
§ 5 Уравнения в полных дифференциалах 167
§ 6 Дифференциальные уравнения первого порядка, не разрешенные относительно производной 170
§ 7 Дифференциальные уравнения порядка выше первого Уравнения, допускающие понижение порядка 179
§ 8 Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами 186
§ 9 Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами 191
§ 10 Линейные дифференциальные уравнения с постоянными коэффициентами порядка выше второго 197
§ 11 Системы дифференциальных уравнений 202
Контрольные задания 215
Глава V Ряды 218
§ 1 Числовой ряд и его сходимость 218
§ 2 Сходимость знакопеременных рядов 226
§ 3 Функциональные ряды Степенные ряды 228
§ 4 Применение рядов в приближенных вычислениях Разложение функций в степенной ряд 234
§ 5 Ряды Фурье 241
Контрольные задания 250
Раздел Б. Основы теории вероятностей и математической статистики
Глава VI Случайные события. Вероятность 252
§ I Элементы комбинаторики 252
§ 2 Основные понятия теории вероятностей 257
§ 3 Теорема сложения вероятностей несовместных событий 265
§ 4 Теорема умножения вероятностей 267
§ 5 Теорема сложения вероятностей совместных событий 273
§ 6 Формула полной вероятности Формула Байеса 275
§ 7 Повторные испытания Формула Бернулли 280
§ 8 Формула Пуассона Поток событий 283
§ 9 Формула Лапласа 285
§ 10 Вероятность отклонения относительной частоты of постоянной вероятности события 288
Контрольные задания 290
Глава VII Случайные величины 297
§ 1 Дискретные случайные величины Основные законы распределения 297
§ 2 Числовые характеристики дискретных случайных величин 302
§ 3 Непрерывные случайные величины 309
§ 4 Числовые характеристики непрерывных случайных величин 312
§ 5 Основные законы распределения непрерывных случайных величин 319
§ 6 Закон больших чисел 324
Контрольные задания 326
Глава VIII Элементы математической статистики 333
§ 1 Статистический материал и его обработка 333
§ 2 Числовые характеристики законов распределения эмпирических величин 337
§ 3 Построение теоретического закона распределения и его согласование с эмпирическими данными 347
§ 4 Проверка гипотезы о нормальном распределении генеральной совокупности 348
§ 5 Проверка гипотезы о распределении генеральной совокупности по биномиальному закону 355
§ 6 Проверка гипотезы о распределении генеральной совокупности по закону Пуассона 357
§ 7 Проверка гипотезы о распределении генеральной совокупности по показательному закону 358
§ 8 Линейная корреляция случайных величин 360
§ 9 Однофакторный дисперсионный анализ 364
Контрольные задания 370
Приложение 377
Список литературы 382




Прикрепления: Картинка 1
Категория: Mатематика студентам | Просмотров: 728 | Добавил: novivirus | Теги: Лунгу К.Н. | Рейтинг: 0.0/0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Похожие материалы: