ZEOS

Ваш IP адрес: 52.87.253.202
Сегодня: 18.01.2019
03:59

Онлайн-библиотека учебно-методической литературы

Библиотека mirsmartbook.ru предлагает посетителям возможность чтения книг в режиме онлайн.
Книги, ГДЗ, решебники, готовые домашние задания, ЕГЭ, ГИА, наука и обучение, словари, все для преподавателей, школьников и студентов, русский язык, математика, физика, английский язык, алгебра, геометрия по всем классам, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 класс. А ты НАШЁЛ то, что тебе нужно? У нас Вы сможете найти все!
Новости Контакты Главная
Загрузка...
Открыть-Закрыть рекламный блок

Меню сайта

Реклама

Счетчики


Мы вконтакте

Загрузка...

Время учиться

Реклама

Методы вычислений. Часть 1 / Хакимзянов Г.С., Черный С.Г. / 2003


11:01
Методы вычислений. Часть 1 / Хакимзянов Г.С., Черный С.Г. / 2003
Аннотация: Методы вычислений, Хакимзянов Г.С., Черный С.Г., Часть 1, 2003.

Учебное пособие соответствует программе курса лекций «Методы вычислений», который читается на механико-математическом факультете НГУ. В его первой части излагаются основы численных методов решения задачи Коши для обыкновенных дифференциальных уравнений, формулируются задачи для семинарских занятий, приводятся примеры контрольных работ и заданий для практических занятий на ЭВМ. Пособие предназначено для студентов и преподавателей математических специальностей высших учебных заведений.

Методы Рунге - Кутты.
Повышение точности модифицированных методов Эйлера было достигнуто за счет дополнительных по сравнению с обычным методом Эйлера вычислений функции ƒ(x, у) из правой части дифференциального уравнения. При этом вычислять частные производные от функции ƒ не требовалось. На этой идее дополнительных вычислений правой части основаны методы Рунге—Кутты высокой точности. В этих методах правая часть дифференциального уравнения вычисляется в нескольких точках, составляется линейная комбинация вычисленных значений, которая и используется при определении значения уj+1. Например, к классу методов Рунге—Кутты относится метод

уj + 1 = уj + A1φ1 + A2φ2,
φ1 = hƒ(xj, yj),
φ2 = hƒ(xj + В1h,yj, + В2φ1),
в котором правую часть надо вычислять дважды. Поскольку здесь значение уj уже известно, то можно определить значение φ1, а затем по явной формуле вычислить и φ2. Выбор постоянных А1, А2, В1, B2 производится так, чтобы получить наибольшую возможную точность при произвольной гладкой функции ƒ(х,у) и произвольном шаге h > 0. Подчеркнем еще раз, что при использовании методов Рунге—Кутты, в отличие от метода степенных рядов, не требуется вычислять производные от функции ƒ.

Оглавление
Предисловие
§ 1. Метод Эйлера
§ 2. Методы Рунге—Кутты
§ 3. Многошаговые методы
§ 4. Конечно-разностные методы
§ 5. Аппроксимация дифференциальной задачи разностной схемой
§ 6. Сходимость разностной схемы
§ 7. Устойчивость разностной схемы
§ 8. Спектральные признаки устойчивости
§ 9. Исследование устойчивости нелинейных задач
§ 10. Численное решение жестких систем дифференциальных уравнений
§ 11. Контрольная работа по теме «Локальная погрешность и аппроксимация»
§ 12. Контрольная работа по теме «Устойчивость конечно-разностных схем»
§ 13. Задания для практических занятий
Ответы, указания, решения
Библиографический список.
 
Прикрепления: Картинка 1
Категория: Mатематика студентам | Просмотров: 118 | Добавил: novivirus | Теги: Хакимзянов Г.С. | Рейтинг: 0.0/0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Похожие материалы: