ZEOS

Ваш IP адрес: 3.237.200.21
Сегодня: 19.09.2020
18:53

Онлайн-библиотека учебно-методической литературы

Библиотека mirsmartbook.ru предлагает посетителям возможность чтения книг в режиме онлайн.
Книги, ГДЗ, решебники, готовые домашние задания, ЕГЭ, ГИА, наука и обучение, словари, все для преподавателей, школьников и студентов, русский язык, математика, физика, английский язык, алгебра, геометрия по всем классам, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 класс. А ты НАШЁЛ то, что тебе нужно? У нас Вы сможете найти все!
Новости Контакты Главная
Открыть-Закрыть рекламный блок

Меню сайта

Счетчики



Мы вконтакте

Время учиться

Реклама

Математика, решебник, подготовка к ЕГЭ-2015, Книга 1, учебно-методическое пособие / Лысенко Ф.Ф., Кулабухов С.Ю.


22:58
Математика, решебник, подготовка к ЕГЭ-2015, Книга 1, учебно-методическое пособие / Лысенко Ф.Ф., Кулабухов С.Ю.
Аннотация:  Математика, решебник, подготовка к ЕГЭ-2015, Книга 1, учебно-методическое пособие, Лысенко Ф.Ф., Кулабухов С.Ю.

Данный решебник поможет выпускнику быстро освоить весь необходимый материал и успешно подготовиться к ЕГЭ по математике. Он состоит из двух частей.
Часть I — настоящее пособие. Оно содержит решения всех вариантов учебно-тренировочных тестов пособия «Математика. Подготовка к ЕГЭ-2015. Кинга 1» под редакцией Ф. Ф. Лысенко, С. Ю. Кулабухова.
Пособие является частью учебно-методического комплекса «Математика. Подготовка к ЕГЭ», включающего такие книги, как «Математика. ЕГЭ-2015. Учебно-тренировочные тесты», «Математика. 10-11 классы. Тренажёр для подготовки к ЕГЭ: алгебра, планиметрия, стереометрия» и др.


Примеры заданий:

Сб. а) Одной группы быть не может, так как среди всех участников кому-то вопросы были заданы. А вот 2 группы могло быть. Действительно, пусть участники 1,2,.,19 задали по-вопросу участнику 20, а участник 20 задал вопрос участнику 1. Тогда в первую группу попадут участники 1,2,., 19, а во вторую — участник 20.
б) Нет. Предположим противное. Тогда в первой группе 2 участника, а в остальных по 1.

Пусть А — первая группа, В — те, кому задавали вопросы участники группы А, С — те, кто задавал вопросы участникам группы А, не вошедшие в В. Каждый участник входит либо в А, либо в В, либо в С. Тогда в В не более 2 участников (члены группы в сумме задали 2 вопроса), а в С 1 участник (так как участники С не задавали друг другу вопросов и С не максимальная группа). Тогда всего не более 5 участников, что противоречит условию.
в) Аналогично пункту б) пусть А — наибольшая группа, В — те, кому задавали вопросы участники А, С — те, кто задавал вопросы участникам А. В В людей не больше, чем в А. В С тоже людей не больше, чем в А. Значит, если в А — т людей, то всего участников не больше Зт, то есть 120 Зт, т 40. Покажем, что т может равняться 40. Действительно, пусть 120 человек разделены на 40 «троек», в каждой из которых первый участник задавал вопрос второму, второй — третьему, третий — первому. Взяв по одному человеку из каждой тройки, мы получим группу из 40 человек, которая удовлетворяет условию. Покажем, что нельзя выбрать большее число человек. В этом случае предположим противное. Тогда из некоторых «троек» попадёт несколько человек, что противоречит условию.

Оглавление
Решения вариантов тестов.
Вариант № I.
Вариант № 2.
Вариант № 3.
Вариант № 4.
Вариант № 5.
Вариант № 6.
Вариант № 7.
Вариант № 8.
Вариант № 9.
Вариант № 10.
Вариант № 11.
Вариант № 12.
Вариант № 13.
Вариант № 14.
Вариант № 15.
Вариант № 16.
Вариант № 17.
Вариант № 18.
Вариант № 19.
Вариант № 20.
 
 

 

 

 

 

 

Прикрепления: Картинка 1
Категория: ЕГЭ математика | Просмотров: 1192 | Добавил: novivirus | Теги: Лысенко Ф.Ф. | Рейтинг: 0.0/0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Похожие материалы: