ZEOS

Ваш IP адрес: 3.236.97.49
Сегодня: 08.07.2020
06:54

Онлайн-библиотека учебно-методической литературы

Библиотека mirsmartbook.ru предлагает посетителям возможность чтения книг в режиме онлайн.
Книги, ГДЗ, решебники, готовые домашние задания, ЕГЭ, ГИА, наука и обучение, словари, все для преподавателей, школьников и студентов, русский язык, математика, физика, английский язык, алгебра, геометрия по всем классам, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 класс. А ты НАШЁЛ то, что тебе нужно? У нас Вы сможете найти все!
Новости Контакты Главная
Открыть-Закрыть рекламный блок

Меню сайта

Счетчики



Мы вконтакте

Время учиться

Реклама

Математика, ее содержание, методы и значение. Том 3 / Под ред. Александрова А.Д., Колмогорова А.Н., Лаврентьева М.А. / 1956


08:56
Математика, ее содержание, методы и значение. Том 3 / Под ред. Александрова А.Д., Колмогорова А.Н., Лаврентьева М.А. / 1956
Аннотация: Из предисловия:
Возникшая еще в древности из практических потребностей, математика выросла в громадную систему разветвленных дисциплин. Как и другие науки, она отражает законы материальной действительности и служит могучим орудием познания и покорения природы. Но свойственный математике высокий уровень абстракции делает новые ее разделы сравнительно мало доступными для неспециалиста. Тот же отвлеченный характер математики порождал еще в древности идеалистические представления о ее независимости от материальной действительности.

Коллектив авторов при составления этой книги исходил из намерения ознакомить достаточно широкие круги советской интеллигенции с содержанием и методами отдельных математических дисциплин, их материальными основами и путями развития.

В качестве минимума предварительных математических знаний читателя предполагается знание только курса средней школы, однако в отношении доступности материала каждый из трех томов не является однородным. Желающие впервые познакомиться с началами высшей математики, с пользой прочтут несколько первых глав, но для полного понимания следующих глав необходимо изучение соответствующих учебников. В полном объеме книга окажется доступной в основном лишь читателям, уже имеющим некоторые навыки в применении методов математического анализа (дифференциального и интегрального исчисления). Для таких читателей - представителей естественнонаучных и инженерных специальностей, учителей математики - особенно существенными окажутся главы, вводящие их в более новые разделы математики.

Естественно, что в рамках одной книги нельзя исчерпать всего богатства даже основных направлений математических исследований; некоторая свобода .в выборе материала при этом необходима. Но в самых общих чертах эта книга должна дать представление о современном состоянии математики, ее происхождении и перспективах развития в целом. Поэтому книга в известной мере рассчитана и на лиц, владеющих основной частью использованного н ней фактического материала. Она
должна способствовать устранению некоторой узости перспективы, свойственной иногда некоторым нашим молодым математикам.


ТОМ 3.   ОГЛАВЛЕНИЕ
Глава XV. Теория функций действительного переменного (С. В. Стечкин) 3
§ 1. Введение 3
§ 2. Множества 4
§ 3. Действительные числа 12
§ 4. Точечные множества 18
§ 5. Мера множеств 26
§ 6. Интеграл Лебега 81
Литература 36
Глава XVI. Линейная алгебра (Д. К. Фаддеев) 37
§ 1. Предмет линейной алгебры и ее аппарат 37
§ 2. Линейное пространство 48
§ 3. Системы линейных уравнений 60
§ 4. Линейные преобразования 72
§ 5. Квадратичные формы 82
§ 6. Функции от матриц и некоторые их приложения 89
Литература 92
Глава XVII. Абстрактные пространства (А. Д. Александров) 93
§ 1. История постулата Эвклида 93
§ 2. Решение Лобачевского 96
§ 3. Геометрия Лобачевского 101
§ 4. Реальный смысл геометрии Лобачевского 109
§ 5. Аксиомы геометрии. Их проверка для указанной модели 117
$ 6. Выделение самостоятельных геометрических теорий из эвклидовой геометрии 124
§ 7. Многомерное пространство 131
§ 8. Обобщение предмета геометрии 144
§ 9. Риманова геометрия 157
§ 10. Абстрактная геометрия и реальное пространство 169
Литература 180
Глава XVIII. Топология (П. С. Александров) 181
§ 1. Предмет топологии 181
§ 2. Поверхности 185
§ 3. Многообразия 189
§ 4. Комбинаторный метод 192
§ 5. Векторные поля 200
§ 6. Развитие топологии 205
§ 7. Метрические и топологические пространства 208
Литература 212
Глава XIX. Функциональный анализ {И. М. Гелъфанд)  213
§ 1. n-Мерное пространство 214
§ 2. Гильбертово пространство (бесконечномерное пространство) .... 217
§ 3. Разложение по ортогональным системам функций 223
§ 4. Интегральные уравнения 230
§ 5. Линейные операторы и дальнейшее развитие функционального анализа 237
Литература 246
Глава XX. Группы и другие алгебраические системы (А. И. Мальцев) . 248
§ 1. Введение 248
§ 2. Симметрия и преобразования 249
§ 3. Группы преобразований 257
§ 4. Федоровские группы 268
§ 5. Группы Галуа 276
§ 6. Основные понятия общей теории групп 279
§ 7. Непрерывные группы 287
§ 8. Фундаментальные группы 290
§ 9. Представления и характеры групп 296
§ 10. Общая теория групп 301
§ 11. Гиперкомплексные числа 302
§ 12. Ассоциативные алгебры 311
§ 13. Алгебры Ли 320
§ 14. Кольца 323
§ 15. Структуры 328
§ 16. Общие алгебраические системы 330
Литература 331
Именной указатель 332
 
 
Прикрепления: Картинка 1
Категория: Mатематика студентам | Просмотров: 23 | Добавил: novivirus | Теги: Александрова А.Д. | Рейтинг: 0.0/0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Похожие материалы: