ZEOS

Ваш IP адрес: 52.23.192.92
Сегодня: 23.02.2019
14:32

Онлайн-библиотека учебно-методической литературы

Библиотека mirsmartbook.ru предлагает посетителям возможность чтения книг в режиме онлайн.
Книги, ГДЗ, решебники, готовые домашние задания, ЕГЭ, ГИА, наука и обучение, словари, все для преподавателей, школьников и студентов, русский язык, математика, физика, английский язык, алгебра, геометрия по всем классам, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 класс. А ты НАШЁЛ то, что тебе нужно? У нас Вы сможете найти все!
Новости Контакты Главная
Загрузка...
Открыть-Закрыть рекламный блок

Меню сайта

Реклама

Счетчики


Мы вконтакте

Время учиться

Реклама

Загрузка...

ЕГЭ 2017. Математика. Неравенства и системы неравенств. Задача 15. Профильный уровень / Шестаков С.А.


10:52
ЕГЭ 2017. Математика. Неравенства и системы неравенств. Задача 15. Профильный уровень / Шестаков С.А.
Аннотация: ЕГЭ 2017, Математика, Неравенства и системы неравенств, Задача 15, Профильный уровень, Шестаков С.А.

  Пособия по математике «ЕГЭ 2017. Математика» ориентированы на подготовку учащихся старшей школы к успешной сдаче Единого государственного экзамена по математике. В данном учебном пособии представлен материал для подготовки к решению задачи 15 профильного уровня.
По сравнению с прошлым годом книга существенно доработана и дополнена.
Пособие предназначено для учащихся старшей школы, учителей математики и родителей.


Более сложные логарифмические неравенства.
Равносильные переходы (1)-(6) из § 8.1 справедливы, разумеется, не только для многочленов первой или второй степени, но и для произвольных алгебраических выражений под знаками логарифмов. Будем в дальнейшем называть неравенства в левой части каждой из этих формул базовыми. Многие логарифмические неравенства и системы, содержащие такие неравенства, сводятся к одному или нескольким базовым неравенствам после выполнения преобразований, основанных на свойствах логарифмов 1-7, или при использовании метода введения новой переменной. Часто можно обойтись без перехода к простейшим логарифмическим неравенствам, рационализировав данное неравенство с помощью метода знакотождественных множителей. Перейдём к обзору методов решения более сложных логарифмических неравенств, начав с метода равносильных преобразований.
 
Прикрепления: Картинка 1
Категория: ЕГЭ математика | Просмотров: 150 | Добавил: novivirus | Теги: Шестаков С.А. | Рейтинг: 0.0/0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Похожие материалы: