ZEOS

Ваш IP адрес: 54.197.24.206
Сегодня: 19.02.2019
19:55

Онлайн-библиотека учебно-методической литературы

Библиотека mirsmartbook.ru предлагает посетителям возможность чтения книг в режиме онлайн.
Книги, ГДЗ, решебники, готовые домашние задания, ЕГЭ, ГИА, наука и обучение, словари, все для преподавателей, школьников и студентов, русский язык, математика, физика, английский язык, алгебра, геометрия по всем классам, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 класс. А ты НАШЁЛ то, что тебе нужно? У нас Вы сможете найти все!
Новости Контакты Главная
Загрузка...
Открыть-Закрыть рекламный блок

Меню сайта

Реклама

Счетчики


Мы вконтакте

Время учиться

Реклама

Загрузка...

Дифференциальное и интегральное исчисление в примерах и задачах (Функции одной переменной) / Марон И. А. / 1970г


21:02
Дифференциальное и интегральное исчисление в примерах и задачах (Функции одной переменной) / Марон И. А. / 1970г
Аннотация:  Марон И. А. Дифференциальное и интегральное исчисление в примерах и задачах (Функции одной переменной). – М., Физматлит, 1970. – 400 с.

Книга представляет собой пособие по решению задач математического анализа (функции одной переменной). Содержит краткие теоретические введения, решения типовых примеров и задачи для самостоятельного решения. Кроме задач алгоритмически-вычислительного характера, в ней содержится много задач, иллюстрирующих теорию и способствующих более глубокому ее усвоению, развивающих самостоятельное математическое мышление учащихся. Цель книги—научить студентов самостоятельно решать задачи по курсу математического анализа.



Книга предназначена для студентов технических, экономических вузов и нематематических факультетов университетов. Она может оказаться полезной лицам, желающим повторить и углубить втузовский курс математического анализа, начинающим преподавателям, а также учителям средней школы, ведущим факультативные курсы в старших классах.


ОГЛАВЛЕНИЕ
Предисловие 5
Глава I. Введение в математический анализ 7
§ 1.1. Действительные числа. Абсолютная величина действительного числа 7
§ 1.2. Понятие функции. Область определения 11
§ 1.3. Элементарное исследование функций 17
§ 1.4. Обратные функции 22
§ 1.5. Построение графиков функций 24
§ 1.6. Числовые последовательности. Предел последовательности 34
§ 1.7. Вычисление пределов последовательностей 40
§ 1.8. Признаки существования предела последовательности 42
§ 1.9. Предел функции 47
§ 1.10. Техника вычисления пределов 51
§ 1.11. Бесконечно малые и бесконечно большие функции. Сравнение их 58
§ 1.12. Эквивалентные бесконечно малые. Применением отысканию пределов 61
§ 1.13. Односторонние пределы 64
§ 1.14. Непрерывность функции. Точки разрыва и их классификация 66
§ 1.15. Арифметические действия над непрерывными функциями. Непрерывность сложной функции 72
§ 1.16. Свойства функции, непрерывной на отрезке. Непрерывность обратной функции 74
§ 1.17. Дополнительные задачи 78
Глава II. Дифференцирование функций 84
§ 2.1. Понятие производной 84
§ 2.2. Дифференцирование явно заданных функций 86
§ 2.3. Повторное дифференцирование явно заданных функций. Формула Лейбница 92
§ 2.4. Дифференцирование обратных функций и функций, заданных неявно или параметрически 96
§ 2.5. Приложения производной 100
§ 2.6. Дифференциал функции. Приложение к приближенным вычислениям 106
§ 2.7. Дополнительные задачи 110
Глава III. Применение дифференциального исчисления к исследованию функций ИЗ
§ 3.1. Основные теоремы о дифференцируемых функциях 113
§ 3.2. Раскрытие неопределенностей. Правило Лопиталя 119
§ 3.3. Формула Тейлора. Приложение к приближенным вычислениям . . 124
§ 3.4. Локальная формула Тейлора. Применение к вычислению пределов 128
§ 3.5. Признаки монотонности функции 129
§ 3.6. Максимумы и минимумы функции 132
§ 3.7. Отыскание наибольших и наименьших значений функции 138
§ 3.8. Решение задач геометрического и физического содержания 141
§ 3.9. Выпуклость и вогнутость кривых. Точки перегиба 145
§ 3.10. Асимптоты 148
§ 3.11. Общее исследование функции 152
§ 3.12. Приближенное решение алгебраических и трансцендентных уравнений 160
§ 3.13. Дополнительные задачи 167
Глава IV. Неопределенный интеграл. Основные методы интегрирования 171
§ 4.1. Непосредственное интегрирование и метод разложения 171
§ 4.2. Метод подстановки 175
§ 4.3. Интегрирование по частям 178
§ 4.4. Рекуррентные формулы 187
Глава V. Основные классы интегрируемых функций 190
§ 5.1. Интегрирование рациональных функций 190
§ 5.2. Интегрирование некоторых иррациональных выражений 195
§ 5.3. Подстановки Эйлера 198
§ 5.4. Другие методы интегрирования иррациональных выражений . . . 200
§ 5.5. Интегрирование биномиального дифференциала 203
§ 5.6. Интегрирование тригонометрических и гиперболических функций . 205
§ 5.7. Интегрирование некоторых иррациональных функций с помощью тригонометрических или гиперболических подстановок 212
§ 5.8. Интегрирование других трансцендентных функций 214
§ 5.9. Обзор методов интегрирования (основных видов интегралов) . . . 216
Глава VI. Определенный интеграл . 221
§ 6.1. Понятие определенного интеграла 221
§ 6.2. Вычисление определенных интегралов по формуле Ньютона— Лейбница 229
§ 6.3. Оценки интеграла. Определенный интеграл как функция своих пределов 233
§ 6.4. Замена переменной в определенном интеграле 246
§ 6.5. Упрощение интегралов, основанное на свойствах симметрии подынтегральных функций 257
§ 6.6. Интегрирование по частям. Вывод рекуррентных формул .... 262
§ 6.7. Приближенное вычисление определенных интегралов 269
§ 6.8. Дополнительные задачи 273
Глава VII. Приложения определенного интеграла 276
§ 7.1. Вычисление пределов сумм с помощью определенных интегралов 276
§ 7.2. Вычисление средних значений функции 278
§ 7.3. Вычисление площадей в декартовых координатах 282
§ 7.4. Вычисление площадей фигур при параметрическом задании границы (контура) 291
§ 7.5. Площадь в полярных координатах 294
§ 7.6. Вычисление объемов тел 298
§ 7.7. Вычисление длин дуг плоских кривых, заданных в декартовых координатах 306
§ 7.8. Вычисление длин дуг кривых, заданных параметрически 308
§ 7.9. Вычисление длин дуг кривых, заданных в полярных координатах 311
§ 7.10. Вычисление площади поверхности вращения 314
§ 7.11. Смешанные задачи на геометрические приложения определенного интеграла 319
§ 7.12. Вычисление давления, работы и других физических величин . . . 326
§ 7.13. Вычисление статических моментов и моментов инерции. Определение координат центра тяжести 330
§ 7.14. Дополнительные задачи 339
Глава VIII. Несобственные интегралы 343
§ 8.1. Несобственные интегралы с бесконечными пределами 343
§ 8.2. Несобственные интегралы от неограниченных функций 353
§ 8.3. Геометрические и физические приложения несобственных интегралов 364
§ 8.4. Дополнительные задачи 369
Ответы и указания 371


Прикрепления: Картинка 1
Категория: Mатематика студентам | Просмотров: 609 | Добавил: novivirus | Теги: Марон И.А. | Рейтинг: 0.0/0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Похожие материалы: